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ABS TRACT 

This report describes the application of two versions of  a quasi-optimum control 

technique, developed at the General Precision Aerospace Research Center, to two guid- 

ance problems. 

The first application i s  that of developing an explicit guidance technique for or- 

bital injection, and comparing this technique to other guidance schemes, particularly the 

Iterative Guidance Mode (IGM) developed at  the NASA Marshall Space Flight Center. 

It was found that General Precision’s quasi-optimum control technique results in orbital 

injection at an earlier time than obtained by any of the other techniques to which i t  was 

compared, and i t  gives excellent results even when the IGM technique fails. The particu- 

lar merit of the General Precision technique, however, i s  significant only in flights which 

are of longer duration than typical of near-term Saturn V flights. 

The second application i s  that of developing a guidance technique for very low- 

thrust vehicles. As a result of normal computational errors (truncation and round-off) the 

results achieved are inconclusive, but a slight advantage i s  seen by use of the quasi-opti- 

mum control technique. 
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1. INTRODUCTION AND SUMMARY 

The general problem of optimum guidance i s  the determination of a steering law by which a 

I 
1 
1 
1 

vehicle, starting i n  an arbitrary state i s  brought to  a desired terminal manifold i n  an optimum fashion. 

The optimum i s  usually defined as requiring a minimum fuel expenditure, thereby maximizing the pay- 

load which can be carried. 

The determination of the optimum steering i s  a well-known problem in  the calculus of varia- 

tions and can be reduced to the solution of a two-point boundary-value problem of ordinary (nonlinear) 

differential equations. 

problems are available but require the use of a large, high-speed digital computer and are not suitable 

for rea I -t ime on-board imp1 ementat ion (explicit guidance). 

Effective computational techniques for solving such two -point boundary value 

The need for approximate techniques which are capable of being implemented on board the 

vehicle but which nevertheless yield nearly optimum performance has been recognized for a number 

of years and i s  currently receiving attention by several investigators. 

I 
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Several versions of a quasi-optimum control technique [ 1 , 2 1  which has given evidence of 

satisfying these requirements ha#been developed at the Research Center of the General Precision 

Systems Inc. , Kearfott Group, and various applications of the technique [ 3 , 41 have been reported 

i n  the technical literature. The objective of this investigation was to determine whether the technique 

i s  useful in two applications of interest to the Marshall Space Flight Center. I 
The application studied more recently was the use of one version of the General Precision 

quasi-optimum control technique to improve the performance of the MSFC - developed iterative guid- 

ance mode (IGM) method of explicit guidance for orbital injection, and to compare the resulting per- 

forrnance with other explicit guidance techniques. These included a flat earth model with a constant 

gravitational f ield over the remaining time-to-go (simplified process for the quasi-optimum guidance 

law) and a &nornial gravity model currently under study at MSFC. The results of the investigation 

demonstrated that the General Precision quasi-optimum control technique investigated i s  always better 

than the other guidance techniques to which i t  was compared. The amount of improvement over the 

I 

I 
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IGM i s  not significant i n  relatively flat, short duration (200 sec.) trajectories which are typical of 

normal Saturn flights, but becomes more evident i n  steep trajectories, i n  which the General Precision 

technique (as well as others) are significantly better than the IGM technique and can achieve as much 

as a 10 percent reduction i n  fuel consuption. The superiority of the General Precision technique to 

the others i s  even more evident i n  trajectories of longer duration (which are not typical of current 

Saturn missions, but may well represent missions of the next decade). In relatively flat trajectories 

of 500 second duration, for example, the General Precision quasi-optimum technique provided as much 

as an eight percent reduction i n  fuel consumption compared to the IGM. 

The most remarkable performance of the General Precision quasi-optimum technique was 

achieved on a trajectory of 1000 seconds optimum duration. The General Precision quasi-optimum 

technique achieved the desired orbit i n  1001.56 seconds which the IGM and polynomial gravity 

steering laws failed to achieve the desired orbit and the simplified steering law inserted the vehicle 

into the desired orbit in 1,231 seconds. 

An earlier study was made of the application of a different version of the quasi-optimurrr control 

technique on the problem of orbital transfer i n  a vehicle using extremely low thrust. A typical mission 

was visualized as that of (1) ascending from a near circular orbit around the earth to (2) a heliocentric 

orbit around the Sun, and finally (3) descent to a near circular orbit around a prescribed planet. The 

objective of the guidance technique was to accomplish the mission with minimum fuel expenditure. 

this investigation we had considered only the first part of the problem, namely the development of 

the steering law which optimizes the trajectory from an arbitrary starting state or the beginning of 

each phase to an arbitrary state at the end of that phase. 

In 

Owing to difficulties which we believe are attributable to normal digital computer round-off 

and truncation errors, the results obtained are inconclusive. A reprogramming of the algorithm to 

avoid unnecessary computations and the attendant computational errors thereof should be undertaken 

prior to the resumption of this study. 
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2. THEORY 

The theoretical b a s i s  of the quasi-optimum control techniques studied i n  this investigation was 

established at the General Precision Aerospace Research Center and studied under Contracts NAS 

2-2648 121 and NAS 2-3636 with the NASA Ames Research Center. Details of the theory and a 

number of examples of application are contained i n  References [ 1-51. For completeness, however, 

a brief review of the theory i s  included here, 

1 
1 
I 

Consider the problem of minimization of x (T) for the system 0 

;c(t) = f(x(t),u(t)) , x = CX,, ... x 3 
n 

1 where x(0) i s  known, the boundary conditions are of the form 

I 
T i s  free and u(t) must be a member of a given set 0 . 

I It i s  well known that i f  an optimal u* exists then u*  maximizes the Hamiltonian 

H(x, u*, p) = max H(x, u, p) = max p'f(x, u) (2-3) I 
U €0 u € 61 

where H(x, u*  , p) = 0. Consequently, u* can be obtained as a function of the adjoint state I 
P = {Po, * * *  I Pn 3 and the process state x:  

u* = o(p,x) 

The adjoint vector p(t) i s  governed by 
I (2-4) 

b(t) = - H X 

with I 
(2-5) 

3 
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where H i s  the gradient of the Hamiltonian with respect to x , X i s  a vector of m constants and 
X 

i s  defined by 

c p =  t = 1, 2, ... , m ; j =  0, 1, ... , n 

Let X(t), P(t) be solutions of the two-point boundary-value problem (2-1) - (2-6) and let 

be the state i n  an altered problem (e.g. , with different ini t ial  or terminal conditions or different 

dynamics), and suppose that 5 i s  a small quantity. As a result of the change 5 in x, the adjoint 

vector wi I I change by an amount $ , i. e. , 

P(t) = P(t> + IC, (t) 

Substitution of (2-7) and (2-8) into (2-1) and (2-5) results i n  

2 i< + i  = H = Hp +HXpS + Hpp$ +O([  ) 
P 

P + 9 = - H  2 
= - H X  - HXX( - HpX$ + O([ ) 

X 

where H and HX are the gradients of the Hamiltonian evaluated at p = P , x = X and P 

4 

d 

x = x  
p = P  

x = x  
p = P  

PX 

x = x  
p=P 

a2 H 
HXX = [ a x .  ax, 

x = x  
p=P 

(2-9) 



Since X and P are solutions to (2-1) - (2-6) i t  follows that 

X P = - H  P X = H  

2 
and hence, after dropping terms of O(5 ) , (2-9) becomes 

i = HxpS + t i p p #  

(2- 10) 

These differential equations are linear, and can be integrated to give 

(2-1 1 )  

where @ (T, t ) ( i ,  j = 1,2) are the (n +1) x (n + 1 )  blocks of the (2n + 2) x (2n +2) fundamental 

(transition) matrix of (2-10) . Our objective i s  to find a relationship between the correction $(t) 

to the adjoint vector p(t) and the deviations [(t) of the state from X(t). To do this i t  i s  necessary 

to eliminate ((T) and #(T) from (2-11) by use of the boundary conditions for the original (exact) 

problem (2-1) - (2-6). 

t j  

Consider a state variable X, fixed at t T. Then 

(2-12) 

The last term i s  a second-order infinitesimal and can be dropped. 

constraint i s  satisfied by Xi at time T, then in  the exact problem the constraint must be satisfied 

at T + dT. Thus we must have xi (T + dT) = C, = Xi (T) and hence (2-12) becomes: 

If i n  the simplified problem the 

[,(T) = -X,dT for X,(T) fixed (2- 13) 

5 



Finally, we must have 

(2- 15) 
= - P '  [ + X ' $ !  = 0 

Equations (2-12) - (2-15) give n + 2  relations. 

enough equations needed to solve (2-1 1) for $It) as a function of [(t) . 
that upon elimination of $(T) and [(T), a linear relation between $(t) and [(t) i s  obtained: 

Since dT i s  an additional variable, there are just 

It i s  readily established 

W) = M ( t M t )  (2- 16) 

Upon differentiation of (2-16) and substitution of the result into (2-lo), there results 

If this realtionship i s  to hold for any 6 ,  the matrix M must satisfy the matrix Riccati equation: 

-dM/dt = MHXp f HpXM +MH M + HXX PP (2- 17) 

It i s  evident that i f  M i s  a solution to (2-17) then M' 

(2-17) can be a symmetric matrix. 

negative of the gradient of the optimum value of x (T) = V 

i s  a solution to (2-17); thus the solution to  

In fact, when the adjoint vector p can be interpreted as the 

0 I2 1,  then 

M = - [  ax f V j ]  ax (2- 18) 

x = x  
Because [(t) i s  a change in x(t) and $(t) i s  the corresponding change i n  p(t), i t  follows that 

.=[+I 
x = x  

even when p cannot be interpreted as the negative gradient of V. 

6 
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era 

Constraints on the magnitude of the control variables, lu, 1 5 U, for example, wi l l  geo- 

l y  lead to a control law which i s  a discontinuous function of the adjoint variables, ahd hence, 

i n  a strict sense not al l  the partial derivatives required i n  (2-10) or (2-17) wi l l  exist. The discon- 

tinuous control variables can be treated by introduction of impulses (delta functions) which arise 

upon differentiation. 

In many problems i t  i s  possible to  approximate the dynamic behavior of the process by a 

system of differential equations of considerably simpler form than those actually governing the pro- 

cess. Under favorable circumstances an analytic solution to the simplified problem can be found, 

but the use of the control law derived for the simplified process may not be entirely adequate for 

the exact dynamic model. 

approximately, however, i t  might be possible to improve performance to an acceptable level. The 

suboptimum control equations of the previous section provides a method of so doing. 

If the neglected terms i n  the original dynamic model were accounted for 

The control u i s  generated as a function of the state x and the adjoint state p. Instead 

of using the exact (unknown) relation p = p(x) between the adjoint state and the process state the 

adjoint state i s  approximated by 

p = P+M[ (2-20) 

where P = P(X) i s  obtained as the analytic solution of the simplified problem and 

M = M(X) 

i s  the matrix M of the previous section, expressed as a function of the state X instead of time. 

(To eliminate time from M, i t  i s  necessary to express time i n  terms of the state variables along the 

optimum trajectory of the simplified system. ) 

The control system, using the optimum transformation from p to  u, but the approximate 

relation (2-20) for the transformation from x to p has the configuration of figure 2.1 . I 

In many cases i t  wi l l  not be possible to obtain an explicit analytical expression for M(X). 

Numerical integration of the Riccati equation, using a function of the state rather than time as the 

independent variable, and analytical approximation of the result may prove feasible. An alternative 

procedure i s  to use an asymptotic solution of (2-17), obtained by setting dM/dt to zero and solving 

the resulting algebraic system. This was the approach used i n  the present study. 

7 



STRUCTURE OF 
QUASI-OPTIMUM CONTROL SYSTEM 

FIGURE 2.1 
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A second method of employing the suboptimum control technique i s  based on the interpretation 

I of (2-19) as the Jacobian matrix of p with respect to x . As a consequence of this interpretation i t  

(2-21) 

provided that the partial derivatives i n  the matrix M are evaluated at the true state x of the pro- 

cess. Thus the adjoint vector can be obtai ned by integration of (2-21); 

t 
p = p  + s  M i d t  0 (2-22) 

1 
1 

This relation leads to a control system with the configuration shown i n  Figure 2.2(a). 

that the derivatives of the state variables instead of the state variables themselves are the quantities 

fed back. 

the principal sensors are accelerometers. 

It i s  noted 

Hence this technique i s  particularly applicable to problems i n  inertial guidance, where 

In the event that cannot be sensed, an alternative configuration can be obtained by par- 

(2-23) 

The right-hand side of (2-17) i s  used for -M i n  (2-23). The control system configuration correspond- 

ing to (2-23) i s  shown i n  Figure 2.2(b); i t  i s  seen that only the state x i s  required i n  the controller. 

1 
1 

8 

In either implementation the matrix M would be generated by real-time integration of (2-17) 

with the nominal ini t ial  condition M 

Thus to achieve near-optimum performance, the actual ini t ial  state x 

the nominal ini t ial  state X for which M and P were computed. If the closed-loop system i s  

asymptotically stable, however, the effects of using init ial ly incorrect values of M and po w i l l  

be only transient. 

and the nominal ini t ial  adjoint state P would be used. 

0 

0 '  0 
should be reasonably close to 

0 0 0 

0 

The first method described was used i n  the application to IGM improvement and the seccmd 

method was used i n  the low-thrust quidance application. 

9 
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PROCESS - 
M U ic = f (x,u) x 

x 

( a )  x MEASURABLE 

( b )  x NOT MEASURABLE 

SUBOPTIMUM CONTROL BASED O N  p(0) , M(0) 
FIGURE 2.2 
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3. APPLICATION TO IGM IMPROVEMENT 

3.1 Exact Problem Formulation 

1 
1 
I 
I 
1 
1 

This application i s  concerned with the improvement of the MSFC Iterative Guidance Mode 

[Ref. 6,7 ] (IGM) computation by use of Friedland’s quasi-optimum control technique i n  which the 

optimum control law for a simplified model of the process i s  linearly corrected to account for the 

difference between the simplified model and the actual process. 

model i s  obtained by assuming that the gravitational acceleration i s  constant i n  magnitude and dir- 

ection over the remaining time-to-go. 

In this application the simplified 

The guidance problem to which the quasi-optimum technique i s  to  be applied consists of 

placing a payload in  a fixed orbit wi th minimum fuel expenditure using a booster which has a con- 

stant thrust magnitude. The assumptions made in  the formulation of the exact problem are: 

I (a) The gravitational acceleration i s  due to a spherical earth; oblateness i s  not con- 

1 
I 

sidered. 

(b) Vehicle motion occurs i n  a vacuum; no atmospheric drag i s  included. 

(c) Vehicle thrust and mass-flow rate are constants. 

(d) Motion of the vehicle i s  confined to a single plane. 

The resultant system i s  governed by the following differential equations i n  an earth centered 

Cartesian coordinate system. 
I 
1 xo =- - 

.- F 
-- - 

x1 xo “1  - gj: + x5 

I 
I 

11 



- 
x4 - x3 

{2x1x;2- xlx; +;x2x3x4} 
x5 = cc 

{x2 3- x;} 

+ 3 x x x  1 2 4  2x x 3 4 - x2x3 
(3-1 

where 
xo =: vehicle mass 

I g * are the x and y components of gravitation acceleration which 
gx* Y 

are constant i n  magnitude and direction during thn remaining 

time-to-go. 

are the direction cosines of thrust acceleration u1 'u2 

F = vehicle thrust 

p = gravitation constant 

are terms used to account for the difference between the approx- 

imate (constant) gravitational f ield and the true field. 
x5 ' '6 

The physical situation i s  illustrated i n  Figure 3-1. 

The problem then i s  to determine the control vector u = [u, I u2 } subject to the constraint 

= 1  
2 2 

u1 + u2 (3-2) 

1 
that takes the process from some current state x(t) to a final state x(T) such that the perfor- 

mance index x (T) i s  a minimum and the remaining states satisfy the boundary conditions 0 

I 1 The current time i s  denoted by the variable t I terminal time by T ; time when i t  i s  used as an 
independent variable i s  denoted by 7, i.e. I t < T < T . 

12 ' 

I 
I 
8 
I 
I 
I 
I 
I 
D 
I 
I 
c 
I 
m 
I 
1 
I 
I 
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I . 
I 
I 
I 
I 
I 
I 
I 
1 
1 
I 
I 

1 
I 
I 
I 
I 
I 

e 

‘-la2 rn 
F 

VEHICLE MOTION IN UNIFORM GRAVITATIONAL FIELD 
FIGURE 3-1 
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, 

(3-3) 

where 
V = orbital velocity 

R = orbit radius 

= magnitude of gravitational acceleration at orbital altitude 
gR 

R e  V = position-veloctiy dot product { R .  V = 0 for circular orbits} 

The terminal time T i s  free. 

The Hamiltonian for this problem i s  

Maximization of the Hamiltonian with respect to u and u subject to (3-2) results i n  the 
1 2 

following steering law 

P1 

(3-5) 

- p3 - 
2 1/2 

u2 (P: + P 3 )  

Using these values of u and u yields 1 2 

14 
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I A 3.2 Simplified Problem 

1 by assuming 

In this application of the quasi-optimum technique the simplified problem i s  obtained 

and x are zero. It i s  observed that the exact and simplified problem x5 6 
differ only by the presence of x and x in  the former. These terms must be included in the exact 

problem to account for the difference between the approximate (constant) gravitational f ield and 

the true field. Since the assumption of uniform gravitation i s  known to be reasonably accurate we 

conclude that x and x are small quantities and i t  i s  reasonable to use the solution of the sim- 5 6 
plif ied problem as the basis for an approximate solution to the exact problem. Thus we select as the 

state of the simplified process 

5 6 1 
I 
I 
I Then 

(Note that 5 i s  the change i n  the performance index due to the simplification.) 0 

The simplified process i s  governed by the following differential equations 
I 
I 
I 
1 
I 

. . *  F x = -  
1 xoul  gx 

1 x2 = x 

x = x3 4 

I t  i s  desired to minimize X (T) subject to 0 

I 
1 

2 2 x1 c r )  + x3 (T) - v2 = 0 

X l ( T )  + X i ( T )  - R2 = 0 

(3-7) 

( 3- 9) 

where {u, u23 /ul  2 + u i  = 1 1  I 
15 



The Hamiltonian for the simplified problem i s  

Maximization of the Hamiltonian with respect to u and u gives 1 2 
p1 p, 

- - 
2 2 1/2 Max H * u 1  

v, + P3) 

J - 
2 2 1/2 

(P1 + P3)  
"2 - 

Substituting u and u into the Hamiltonian gives 1 2 

The corresponding adjoint equations are 

2 
P = - P  

1 

i, = o  2 

4 P = - P  3 

P = o  5 

Let t denote the present time and let t 5 7 5 T . Then the solution of (3-13) i s  given by 

P1 (7) = P,(t) - (7 - t)P2(t) 

P3(7) - P3 ( t )  - (7- t)P4(t) 

P2(7) - P2(t) constant 

P (7)  = p4(t) constant 4 

16 

(3-10) 

(3-1 1) 

(3- 12) 

(3-1 3) 

(3-1 4) 



The optimum control law for the simplified process (3-8) becomes 

(3-1 5) 
P,(t) - (7- t)P,(t) 

2 2 1/2 
u (7) = sin e =  

f[Pl(t) - (7- t)P2(t)] i- [ p i ( t )  - (7-t)P4(t)l 3 

Substituting (3-15) into (3-8) and integrating to the terminal time T, results i n  expressions 

2 

for X1 (T) I X2(T) 

The integrals are 

X3(’T) , X,@) , as functions of T - t (time-to-go) and the init ial  conditions. 

(3-16) 

T 
x4v) - X,(t) = X3(7) d 7  

t 

17 



The solutions of the integrals are 

where 

v = F / i  
ex 

T o  = Xo(t)/ni 

= T - t  
TGO 

1 I =  
1 2 1/2 

[a + b r 0  + C T  0 ] 

2a + b(TO + TGo) + 2cT T 

( T o  - TGO)(4ac - b ) 

0 GO 
2 1/2 C Y -  

2a + bTO 
p -  

2 1/2 
T0(4ac - b ) 

18 
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b +2cTG0 

(4ac - b ) 2 1/2 Y =  
I 
I 

b 
2 1/2 

A =  
(4ac - b ) 

2 2 
a = P1 (t) + P3 (t) 

b = - 2(P, (tP2(t) + P3O)P4(t)) 

c = P2 (t) + P4 (t) 2 2 

The integrals of the equations of motion (3-17) must be substituted into the boundary con- 

ditions (3-9) and solutions for P1 (t), P (t), P (t), P (t), and TGO obtained. However, there are 

f ive unknown parameters and four boundary conditions. The fifth relation i s  obtained by using the 
2 3 4 I 

1 
I 

Hamiltonian with P = 1 ,  i.e. 1 

F ^ 2  1/2 

mO 

A h A 

39; + p4x3 H = - K + -  [ l  + P  - g:+P2X,-P 3 
(3-18) 

A 

P 
1 = 1 and P5 = Pt (t = 2, 3,4) are substituted into (3-17). The boundary conditions 

(3-9) are solved using a modified secant iterative algorithm supplied by MSFC 

The adjoint variables are obtained by solving (3-18) for K together with P1 = 1/K and 

Pt = Pt/K (i = 2, 3,4). 

* and g * are obtained i n  the algorithm by use of the following relations 

(see Appendix 11). I 

I gx Y 

L, 

Thus the constant (over the remaining time - to - go) gravitational terms are taken as the 

average of the current and final gravity components. 

19 



3.3 Quasi Optimum Control Law 

In the quasi-optimum control law the x and y components of vehicle acceleration are 

given by 

F P1 F p3 
2 2 1/2 - and - 

X 
0 (P, + P3)  

X 2 2 1/2 
0 (P, + P 3 )  

i n  which approximate values of p and p are used. These approximations are given b: 1 3 

(3-20) 

From (3-7) however, 6 ,  thru 5, are zero and 5 -- and 6, = x6; hence (3-20) becomes 
5 - x5 

= P , + m  X + m  X (3-2 1 ) P1 15 5 16 6 

p3 35 5 36 6 = P 3 + m  X + m  X (3-22) 

and m i n  the matrix M are needed. These are calculated with 
15' m16' m35' 33 Thus only m 

the aid of (2-15). The coefficient rnatricies H 

by performing the required partial differentiations on the Hamiltonian for the complete problem 

. . . , Hpp appearing therein are found xx 

given by (3-6), and evaluating the result at 

20 

H 
xxoo 

0 

0 

0 

0 

0 

0 

0 

0 

H 
xxl 2 

0 

0 

0 

0 

0 

H 
xx12 

xx22 
H 

H 
"1 4 

"24 
H 

0 

0 

x = X, i.e., for x5 and 

0 

0 

H 
"1 4 

0 

H 
xx34 

0 

0 

0 

H 
"1 4 

"24 
H 

H 
xx34 

xx44 
H 

0 

0 

-. 
= 0.  The results are 

'6 



1 . 
I 

where 

- 2F 2 2 1/2 H - 3 (Pi + P3) 
xxoo xo 

p[3P6X4 3 + 9X2P5Xi - 12P6X2 2 X4 - 6P5X2 3 ] 
- - 

I 
2 2 7/2 I IX2 + x41 

p[3P5X43 - 12P6X2X42 - 12P5X2X4 2 + 3P6X21 3 

13(3P5X1 - 4P6X3)Xf - 45(P5X3 + P6X1)X2X4 3 

- - 
2 2 7/2 

HXX14 IX, +x4I  

- - 1 
2 2 9/2 H 

I 
xx22 IX, + X 4 ]  

4 3 - - c1 [-12(P6X1 + P5X3)X4 + 15(4P6X3 - 3P X )X X 2 2 9/2 5 1  2 4  
H I "24 [x2 + x 4 ]  

2 2  3 4 
5 1  2 4  + 81 (P6X1 + P5X3)X2 X4 + 15(-3P6X3 + 4P X )X X - 12(P6X1 + P5X3)X2 ] 

p[-6P6X,3 - 12P5X2X4 2 + 9P X 2 X + 3P5X2 3 1 
- 6 2  4 - 

2 2 7/2 H 
xx34 IX2 + X41 I 

- - P [12(-P5X1 + 2P6X3)X4 4 + 60(P5X3 + P6X1)X2X4 3 2 2 9/2 
H I xx44 [X2 + X 4 ]  

+ 9(9P5X1 - sP6x3)x;x; - 45(P5X3 + P x )X 3 x + 3(-4P5X, + 3P6X3)X2 2 ] I 6 1  2 4  

I 
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HpX - - HXp' = 

where 

O H  
pxo 1 

0 0 

0 0 

0 0 

0 0 

0 1 

0 0 

- FP, 
- - 

2 2 2 1/2 H 
pxol X0(P1 + P3) 

H 
"03 

0 

0 

0 

0 

0 

1 

0 

H 
"1 5 

"2 5 

"16 

"26 

H 

H 

H 

0 

0 

- FP, 
J - - 

2 2 2 1/2 H 
"03 Xo(P1 + P3) 

2 2  
' 1 w 2  - X4) 

- - 
H 2 2 5/2 "15 (X2 +X4)  

'1 (3X*X4) 
- - 

H 2 2 5/2 "16 (X2 + X 4 )  

p[3X3X, 3 + 9X,X2X: - 12X2 2 X3X4 - 6X1X2] 3 
- - 

2 7/2 H 
"2 5 I< + x41 

p[3X1XQ - 12x2x3x; - 12x1x2 2 x4 + 3 g x 3 1  

22 

0 

H 
"1 6 

"26 

"36 

H 

H 

H 
px46 

0 

0 



L 4 

The resu 

- - - &OO 

0 

- FP1 P3 

0 

- FPlP3 

2 2 3/2 
XOP1 + P3) 

0 

FP: 

2 2 3/2 
XOP1 + P3) 

0 

0 

0 

t of substituting these matrices into (2-15) i n  component form are 

+2m m H + m  2~ 3-H 
+ 2m03H PXo3 01 PPll 01 03 PP13 03 PP33 xxoo 

+ m  2~ 

+ m  H + m  H 
+ "1 lHPXOl 13 PXO3 1 1  PPll 

+ m  H + m  12m01HPPl 

+ m  H 06 PX16 + m  H - 
-'Ol - m02 05 PX15 

+ (ml lm03 +m13m01)HPP13 + m  13m03 H PP33 

+ (m12m03 +m23mOl)HPP13 + m  23m03 H PP33 

+ m  H + m  H 02 m05HPX,5 06 PX26 12 PXOl 23 PXo3 
- m  = 

(3-2 3- 1 ) 

(3-2 3-2) 

(3-2 3- 3) 

23 



1 3m01 PP1 + m  H + m33HPXo3 + m  
13 PXol 

H 03m33 PP33 

+ m  H 06 PX36 + m  H - 
-m03 - m04 05 PX16 

+ m  m )H + m  
+ (m13m03 33 01 PP13 

-m04  = m  05 H PX26 + m  06 H PX& + m  14 H PXol + m  34 H PXO3 + m l  4m01 PP 

H 34m03 PP33 )H + m  
+ (m 1 4m03 + m34m01 PPI 

1 !jmO1 PPI + m  H + m  pxo 1 35 PXO3 

H 35m03 PP33 m 35m01)H PPI + m  

(3-2 3- 4) 

1 
(3-23-5) 

+ m  H + m  36 H PXo3 + m  16m01 HPPl -m06 - m03 16 PXol 
- 

+ m  m H 36 03 PP33 + m  m )H 
+ (m16m03 36 01 PP13 

+2m m H + m  2~ -ill = 2 m  12 +2m 15 H PX15 +2m16HPX16 11 PPll 11 13 PP13 13 PP33 
+ m  2~ 

+ m  H + m  H m22 25 PX15 + m  26 H PX16 + m  1 P12HPPl + - m 1 2  = m H 15 PX25 16 PX26 

+ m  m )H + m  m H .f H 
xxl 2 +(m12m13 11 23 PP,3 13 23 PP33 

+ m  H 
+ m  16 H PX36 + m  35 H PX15 m H  36 PX16 +mllm13HPP 15 PX16 

+ m  m H 
)H 13 33 PP33 +(m13 + m l l m 1 3  PP13 

- 
- m13 - m14 +m23 

2 

+ m  H + m  H + m  H +ml 1m14HPPl 45 PX15 "16 16 PX4 -m14  - m24 15 PX26 + m  H - 

+ m  m H + H  13 34 PP33 "1 4 
+ m  m )H +(m13m14 11 34 PP13 

24 

( 3-2 3-6) 

(3-2 3-7) 

(3-2 3 -8) 

(3-23-9) 

1 
(523- 10) 

(3-23-1 1) 



1 
I 
I 

+ m  H + m  
56 PX16 + m  H - - m15 - +m25 55 PX15 

I 

+ (m13m15 +mllm35)HPP13 + m  13m35 H PP33 

+ m  H 
+ m  66 H PX,6 + m  1 lmlbHPPl -m16 - m13+m26 56 PX15 

- 

+ (m13m16 +m11M36)HPP13 + m  13m36 H PP33 

(3-23-12) 

(3-2 3- 1 3) 

-m22  = m H +2m H + H  (3-23-1 4) +2m m H 
x 3 2  

+ m  2~ 23 PP33 12 23 PP13 + m  2~ 12 PPll 25 P%5 26 PX26 

+ m  - '23 - m24 +m25HPX16 + m  26 H PX36 + m35npX25 + m36H P%6 12m 1 gH PP1, 
- 

+ m  m H + H  

I 
(m13m23 +m12m33)HPP13 23 33 PP33 "1 4 

I 
1 
I 
I 
I 
1 
I 

- - m  H + m  H +m45HP35 + m 4 6 H P 3 6  + m  12 m 14 H PPll - m 2 4  25 PX26 26 PX4 

+ m  m H + H  34 23 PP33 X%4 + m  m )H 
+ (m14m23 34 12 PP13 

- m25 - m12 + m55HPX25 + m  56 H PX26 + m  12 m 15 H PPll (m15m23 +m12m35)HPP13 
- 

H 
23m35 PP33 

+ m  

+ m  m )H + m  H + m  66 H PX26 +rn 12m16HPPl +(m16m23 56 PX25 12 36 PP13 
- 

- m26 - m23 

H 
23m36 PP33 + m  

(3-23-15) 

(3-23-16) 

(3-2 3- 17) 

(3-23- 1 8) 

+ m  2~ (3-2 3- 1 9) 33 PP33 +2m m H 13 33 PP13 + m  2~ - m33 - 2m34 35 PX16 + 2m36H PX36 13 PPll +2m H - 
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+ m  H + m  
46 “36 

+ m  H 45 PX16 + m  H - - ‘34 - m44 +m35HP56 36 PX& 

H + H  
33m34 PP33 xx34 

+ m  m )H + m  +(m14m33 13 34 PP13 

- ‘35 - m13 +m45 +m55HPX16 + m  56 H PX3 + m  13m15HPPl 

+ m  m )H + m  

- 

H 35m33 PP33 (m15m33 35 13 PP13 

+ m  + m  H + m  66 H PX36 + m  16m13HPPl -m36 - m33 46 56 PX16 
- 

H 36m33 PP33 + m  m )H + m  
+(m16m33 36 13 PP13 

3m14HPPl 

(3-23-20) 

(3-2 3-2 1 ) 

(3-2 3-22) 

+ m  2~ + H  (3-2 3-2 3) 
+ 2m 1 4m34H PP1 34 PP33 xx44 

+ m  2~ 14 PPll 

+ m  H + m  56 H PX& + m  14m15HPP1 55 PX26 

H 

- 
- m45 - m14 

34m35 PP33 + m  
(m 1 5m34 + m34 + 1 4m35)H PPI 

1 4m 16H PP1 + m  H + m  H + m  - 
- - m34 56 PX26 66 PX4 

H 34m36 PP33 + (m16m34 +m14m36)HPP13 + m  

+ m  2~ 35 PP33 +2m m H 15 35 PP13 + m  2~ - ‘55  = 2m15 15 PPll 

(3-23-24) 

(3-2 3-25) 

(3-2 3-26) 

- + m  + m  m H + (m15m36 +m16m35)HPP13 + m  H (3-2 3-27) 35m36 PP33 -m56 - m35 16 15 16 PPll 

= 2 m  + m  2~ +2m m H + m  2~ (3-23-28) 
m66 36 16 PPl, 16 36 PP13 36 PP33 
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and k equal to zero involve only the 55 ' m56 ' 66 
Note that equations (3-23-26, 27, 28) with 

four required correction coefficients m 15 ' m16 36 ' m35 and m 

3 c) 

+ m  L~ 
+ 2m 1 5m35H PP1 35 PP33 

O = 2 m  + m  'H 15 15 PPll (3 -2 4a) 

H (3-24b) + m  35lrn36 PP33 O = m 3 5 + m  + m  +(m15m36 +m 16 m 35 )H PP13 16 15m16HPPl 

o = 2 m  + m  2~ +2m m H +m 2~ 36 16 PPll 16 36 PP13 36 PP33 

equations (3-24) become 
2 

ppll pp33 "1 3 
Since H H = H  

- H 
15 + (m15HPP1 35 PP13 

0 = 2m 

0 = m 3 5 + m  (m H 1/2 - m  H 'I2) (m 16 15 PPll 35 PP33 

1/2 - m  H V2) 2 
= 2m36 + (m16HPP1 36 PP33 

1/2) 

p33 

(3 -2 4 ~ )  

(3-25a) 

(3-25b) 

(3-2%) 

A fourth equation i s  obtained by solving (3-23-6) and (3-23-7) with k and k 05 06 equal 

These relations are 36 ' and m 15' m16f m35 
to zero for m and m as a function of m 

01 03 

+ m  H ]/D 35 PXO3 
mol = c 1  + m  H + m  H ]em H 16 PP13 36 PP33 15 PXol 

+ m  H ]em H + m  H ]/D 36 PXo3 35 PP33 16 PXol +em H 15 PP13 

+ m  H ]/D 35 PXO3 mO3 = Cm H + m  H }ern H 16 PPll 36 PP13 15 PXol 

+ m  H ]ern H + m  H ) /D  36 PXo3 - " +m15HPP11 35 PP13 16 PXol 

where 

D = l + m  15 H PPll +(m16 + m  35 )H PP13 + m  36 H PP33 

(3-27) 

(3-28) 
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Substituting (3-26), (3-27), and (3-28) into (3-23-1) with k equal zero and simplifying 00 
results i n  

2 2  
P ) 2  + (pl + p3)1 

xo' 
[-2Xo(molP1 + m  P ) + 2 2 2 (m01P3-m03 1 3 3 2 1/2 03 3 

F 

P1 $- P3) (3-2 9) 

O =  
X0(P1 + P3) 

Note that the presence of H i n  (3-23-1) eliminates the tr ivial solution 
- - - xxoo 

m15 - m16 - m35 - m36 = O .  

Simplifying (3-25a,b,c) results i n  

F 2 
2 2 3/2 (m15p3-m35p1) 

O = 2 m  + 
X0P1 + P3) 

15 (3- 30) 

(3-31) 
F 

3/2 ("15'3 m35Pl)(m16P3 - m36P1) 

(3-3a 

Equations (3-29) thru (3-32) are solved simultaneously using the modified secant algorithm to obtain 

the required correction coefficients. 

3.4 Comparison of Guidance Law Performance 

This section quantitatively describes the performance of four explicit guidance techniques 

used to inject a payload into a fixed orbit with minimum fuel expenditure. The booster i s  assumed 

to have a constant thrust magnitude. 

dance technique are examined. The four guidance laws examined are: 

Some of the difficulties and limitations inherent i n  each gui- 

(1) Iterative Guidance Mode (IGM) 

(2) Quasi-Optimum 

(3) Simplified 

(4) Polynomial Gravity Expansion (PGE) 
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I 

The IGM (6,7,8), developed by MSFC, i s  an explicit guidance law which approximates the 

central gravitational field by a uniform field over a flat earth. Applying theequationsderivedfrom the 

simplified model to a spherical earth and an init ial estimate of the time-to-go, the terminal range 

angle i s  computed as a function of the current position and the additional displacement that would be 

obtained during the remaining time-to-go. Since the predicted range angle may be i n  error, a weight- 

ing factor may be used i n  this computation t o  account for gravity loss on steep and/or long duration 

trajectories. The computation used to update the time-to-go i s  derived by simultaneously solving the 

volocity to be gained equation at a given instant of time together with the characteristic velocity 

equation. 

I 
I .  

8 
I 

1 
The steering angle i s  computed in two parts. The first part i s  assumed to be the major portion 

of the steering angle and i s  a constant angle obtained by ut i l iz ing the optimum steering constraints 

required to  obtain a given velocity without position constraints over a flat earth. The second smaller 

part i s  comprised of a linear time function which i s  added to the first part and substituted into the 

equations of motion. A small angle approximation i s  made and the equations of motion are integrated 

and relations obtained, subject to the optimality constraints for the flat earth model, to obtain the 

complete steering angle. The computer flow diagram for the IGM algorithm used i n  this investigation 

i s  provided in  Appendix I. 

I 
1 

The simplified guidance law derived in Section 3.2 utilizes a modified secant algorithm for 

n equations i n  n unknowns to solve (3-17) for P P P P and time-to-go. The vehicle i s  

steered according to 

1 
I 1 ’  2’ 3’ 4 

p3 

p1 
tan x = - 

A description of the modified secant algorithm i s  provided i n  Appendix II . 
The quasi optimum guidance law derived i n  Section 3.3 i s  exactly the same as the simplified 

law with the additional step of employing the secant algorithm a second time to solve equations (3-29) 

and m through (3-33) for m15, m16, m35, and steers the vehicle according to 36 

I 
P + m  x + m  x 

P + m  x + m  x 
3 35 5 36 6 

1 1 5 5  1 6 6  
tan x = 
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The PGE explicit guidance law which i s  currently under investigation at MSFC i s  similar to 

the simpli f ied guidance law with the exception of the gravitational model used i n  the equations of 

motion. The simpli f ied law uti l ized (3-14) to derive the constant (over the remaining time-to-go) 

gravity terms which are an average of the current and predicted final gravity terms. The PGE uses 

a third order polynomial to approximate the gravity components, i. e. , 

Parameter 1 Set 1 

t = l , 2  

j = 1, 2, 3, 4 

Set 2 Set 3 

(3-34) 

1 

I 500 r I 
200 Burn Time (Seconds) 

Ignition Mass (Kilograms) 151614.12 218908.5 

Burnout Mass (Kilograms) 1 116751.2 116751.2 
I 

The algorithm used to calculate the C ‘s was furnished by MSFC and i s  presented i n  Appendix 111. 

Three sets of optimum trajectories were generated by integrating the exact equations of motion 

with aptimum steering backwards i n  time from a 100 nautical mile circular orbit about the earth. The 

burnout state and adjoint vectors for each run were obtained from the circular orbit boundary condi- 

tions (3-3) and the variational Hamiltonian (3-6). 

the vehicle for each set of ini t ial  conditions obtained from the optimum trajectories. 

the guidance law computation was performed every second of flight time. 

adjoint variables was stopped when T 

vehicle was steered with the last set of adjoint variables although the calculation of T 

tinued unti l T 

tj’ 

The four guidance laws were then used to steer 

In each case 

The computation of the 

10 seconds and during the remainder of the fl ight the GO 
was con- GO 

= 0 .  
GO 

< 1 second. The engine was shut down when T 
GO 

The vehicle thrust was taken as 889,646 Newtons (200,000 pounds) and mass flow rate as 

204.3146 kgm/second (14 sIugs/second) for a l l  runs. The parameters common to each set of trajec- 

tories are listed i n  Table 3-1 

1000 

934009.6 

729695.0 

30 
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, 

Guidance Law 

On relatively flat 200 second trajectories which are typical of Saturn third stage flights a l l  

four guidance laws performed extremely well. The engine burn times were between 200.05 and 200.1 

seconds for each run. Figures 3-2 through 3-4 illustrate the position, velocity, and pitch angle for a 

steep optimum 200 second trajectory. O n  this traiectory the IGM required a large weighting factor to 

obtain a reasonable init ial  pitch angle and did not perform as well as the other guidance laws. Table 

3-2 l i s t s  the engine burn times required to  insert the booster into a 100 nautical mile orbit from the 

ignition point illustrated i n  Figure 3-2. 

Table 3-2 

Burn Time (Seconds) 

Burn Times Required to Achieve Orbit for a 200 Second Optimum Trajectory 

Quasi -Optimum 

Simp1 i f  i ed 

PGE 

IGM 

200.74 

200.77 

200.81 

237.89 

A 500 and 1000 second optimum trajectory were generated which are not typical of current 

Saturn requirements but may well represent future mission requirements. The position, velocity, and 

pitch angles for these traiectories are illustrated i n  Figures 3-5 through 3-10. The IGM required a 

weighting factor to account for the long duration of the 500 second trajectory but could not determine 

a reasonable pitch angle for the 1000 second trajectory and failed to achieve the desired orbit. The 

PGE guidance law performed very well on the 500 second trajectory but the algorithm to determine 

the steering angle did not converge on the 1000 second trajectory and the vehicle failed to achieve 

orbit. The quasi-optimum and simplified guidance laws achieved the required orbits on both trajec- 

tories with excellent burn times on the 500 second run, but the simplified law gave poor results on the 

1000 second run. The quasi-optimum control law, however, achieves, the desired orbit i n  1001.56 

seconds! 

Table 3-3 l i s t s  the engine burn times required to achieve the orbital conditions for the 500 

and 1000 second traiectories. 
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X VS Y POSITION - 200 SECOND OPTIMUM TRAJECTORY 
FIGURE 3-2 
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I 
I 
I 
1 
I 
I 
U 
I 
I 
I 
U 
8 
1 
1 
I 
I 
I 
1 
I 

~ ~~ 

500 1000 

539.29 Orb; t not obtained 

500.53 1001 .56 

500.60 1231.28 

501.14 Orb; t not obtained 
i 

Table 3-3 

Burn Times Required to Achieve Orbit for 500 and 1000 
Second Optimum Trajectories 

Guidance Law 

I GM 

Quasi Optimum 

Simplified 

PG E 

I Burn Time (Seconds) 

Figure 3-10 illustrates the pitch angle vs. t ime for the 1000 second optimum trajectory. The 

pitch angle commands generated by the simplified and quasi-optimum guidance laws are also given. 
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4. APPLICATION TO LOW-THRUST GUIDANCE 

4.1 Equation of Motion 

The primary purpose of the investigation was to develop and evaluate a feedback guidance 

law using the quasi-optimum control technique. Therefore for simplicity, but without loss in 

generality, a planar trajectory was considered. The state mriables chosen to  represent the motion 

of the vehicle are a hybrid set of orbital elements in which the zero-eccentricity singularity h a s  

been removed. The independent variable i s  T , where T 

n being the "mean motion". 

i s  related to real-time t by dT = n dt, 

At first glance it would appear that the system can be adequately represented by a 5-compo- 

nent state vector; 4 for the orbital (planar) motion and 1 for the mass of the vehicle. However, the 

dynamic equations contain the independent variable explicit ly and, therefore, are not compatible 

with the quasi-optimum control theory which requires that the system be autonomous. The system 

can easily be made autonomous by including the independent variable as a separate component of 

the state vector. The following six component state vector i s  used to  completely specify the state 

of the system 

x1 = a/ao 

2 = e sin w 

x = t  4 

x =m/m 
5 

x6 = 7 

0 

where 
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a = semi major axis 

2 
e = (x 2 + x$* = eccentricity 

-1 
w = tan (x /x ) = argument of perigee 2 3  

t = time 

m = instantaneous mass 

r = non-dimensional time = ] n dt 

n = (p/a ) 3 *  = mean motion 

~1 = gravitational constant of the attracting body 

Subscript 0 = reference values 

Other terms which wi l l  be used subsequently are defined as 

T = thrust/m = reference thrust acceleration (T/x 5 = 0 
instantaneous thrust a cce I era t ion) 

Q = thrust angle measured with respect to local horizontal 

c = exhaust velocity of propellant = 1 g 

k =  l/c 

SP 

The equation of motion in terms of the above six-component state vector is  given by 

dx - F(x) u 
d r  

-- 4 - (x ,a0)3/2/c1* 

5 dx = -kT(x a ) 3 / 2 p  

dx 

dr 

d r  1 0  

= 1  6 dx 
- 

d+r 
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I 
1 ,  
1 
a i  
II 
I 
I' 
1 
I 
I 
I 
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(4-1) 1 

I 
I 
I 
I 



I 
1 
I 

. 

where 

I 
I 
I 
I 
I 
1 
1 
I 

where 

1 - y cos T 

y s i n  T 

2 2 - Thrust T r  ( u ~ + u )  - - 1 
C 2 

k -  - 
mO 

6 = 1 + x  C O S T + X  s in7  and y ' ( 1 - x 2 - x 3 )  2 2 $  
3 2 

Equation (4-1) are the dynamic equations for the nominal system. The actual system w i l l  

contain additional unaccounted for perturbing forces which w i l l  cause the vehicle to  depart from 

any predetermined nominal traiectory. A derivation of the control law for generating the nominal 

trajectory as well as the feedback guidance scheme based on the quasi-optimum control technique 

are given below. 

4.2 Optimum Control Law 

The Hamiltonian for the system (4-1) i s  given by 

i 
I 
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It i s  easily verified that this Hamiltonian i s  maximized by the following control 

u = {  (4-3) 

i o  
Substituting this optimum control into (4-2) results in the following Hamiltonian 

The equations of motion together with the equations for the adjoint variables for the two 

cases (engine-on and engine-off) are obtained by direct application of (2-1) - (2-5). 

5 1 0  Case 1 Engine-off i.e., lF'p\< kp (x a ) 3/2/c13 

x 1 - x 2 - x 3 = x 5 = o  - - 

x 4 =  (x a ) 3/73 
1 0  

x 6 =  1 

46 
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Case 2 Engine-on i.e., 

i = TFF‘P/\ ~ ‘ ~ 1  

I F ’p l r  kp (x a ) 3 / 2 4  
5 1 0  

* = ( x a )  3 / 9 8  
x4 1 0 

= -kT(a x ) 3/2/$ 
0 1  

x 6 =  1 

*fit = -(H ) 
x t  

t = 1, 2, 3 

b4 = 0 ; p4 = constant 

T 
P 5 = 7  P P I  

5 

Since the only performance criterion being considered i s  that of minimum fuel or minimum 

time, in both Case 1 and Case 2 p and the terminal value of p w i l l  be specified as 4 5 

5 f  
p4 = -1 and p (t ) = 0 for minimum time solution 

= constant and p (t ) = + 1 for minimum fuel solution p4 5 f  

For any set of boundary conditions of the form (2-2) together with the corresponding costate 

variables a t  the boundary expressed by (2-6) a nominal trajectory can be obtained by solving the re- 

sulting two-point boundary-value problem using any one of a number of iterative techiques. 

Obtaining the optimum control law for the actual system w i l l  require, of course, knowing 

the equations governing the actual dynamic system. However, only the dynamics of the nominal 

system are known exactly and therefore we must make the assumption that the optimum control law 

for the actual system has the same functional relationship as for the nominal system; i.e., (4-3) is  

also the optimum control law for the actual system with the state and costate variables evaluated 

* Explicit expressions for H and H are given in  section 4.3. 
X 7 
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along the actual trajectory. The state variables along the actual path can be obtained from 

sensing devices while the costate can be approximated in accordance with 

correction matrix M(t) 

In general this computation can either be done in real-time or else computed beforehand and 

stored w i th  the nominal trajectory. Judging from the computation that would be required for cal- 

culating the matrices of second partials i t  appears that a pre-computed and stored correction 

matrix i s  the better choice. This w i l l  become more evident in the section 4.3. 

(2-21). The 

i s  obtained by solving the matrix Riccati equation (2-17) . 

H =  
X 

4.3 Calculation of Coefficient Matrices H , H , H , H : 
XD DX xx DP 

0 

0 

0 

0 

0 
c 

The matrices of second partials required in the solution of the matrix Ricca!i equation 

(2-20) i s  obtained by direct differentiation of the Hamiltonian (4-4) for the two cases of "engine-on" 

and "eng ine-off". 

Case 1 Engine-off i .e., IF' p 

The first partials H and 
P 

H =  
P 

H are given below 
X 

(x 3/73 
0 

1 

(4-7) 

The second partials are obtained by differentiation of (4-7) with respect to x and p.  

i s  evident that a l l  the elements of the H matrix are zero except for (H ) which i s  given by 

It 

XP xp 41 

The (H ) matrix also has only one non-zero element 
xx 

3 

Al l  the elements of the H matrix are zero. 
PP 
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Case 2 Engine-on i.e. , IF'p( 2 kp5(xlao) 3/2/$! 

and x expl ici t lyand x2' x3 6 The F matrix defined in equation (4-1) contains x 1  , 
therefore for the "engine-on" case i t  i s  convenient to first define the following set of 3 x 2 partial 

der i vat i ve matrices : 

t =  1, 2, 3, 6 

(4- 10) 

Expressions for these matrices are obtained by direct differentiation of the F matrix. 

In terms of the and Q (") matrices, we define another set A(t)  and A which 

are given by 

A = [(Q(t) F') -t (Q (t) F f ) f ]  t =  1, 2, 3, 6 

A(tJ) = [(Q(tj) F f  + Q(') Q'di ) )  + (Q('J) F f  + Q (6)  Q'di)),] (4-1 1) 

t =  1, 2, 3, 6 

j =  1 ,  2, 3, 6 

where A(') and 

can be expressed in  terms of these newly-defined matrices. 

A (") are 3 x 3 matrices. The elements of H , H H and H 
P x f  XP PP 

The six component H and H vectors are given by 
P X 

H =  
P 

where H E ,e 
P 

T 
3 

t 
2 

(4- 12) 
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where 

H =  
X 

+ 

The second partials are obtained by differentiation of (4-12) and (4-13). This results in the 

where 

(hxJ5, - - - - kT(x la:/p).i 
2 
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8 
th I ' The t -  column of the 3 x 3 H matrix i s  given by 

X P  

I 
I 
I 
I 
I 
I 
I 
I 

where 

I 
I 
I 
I 
I 
I 

H =  
xx 

A(6) p - H P ' A ( ~ )  p/2)F'pI2 
HTp = rn P 

c 

xx 
H 

* 1 2 7  . 
-- 2 3 N 

[- H ' x q  

I 
I 
I 
I pi I 'I 
I 
I 
I 
I 
I 

! 

TX 
i 

3 

I 

I 
I 

I I 0 

t =  1, 2, 3 
j =  1, 2, 3 

I 
0 I O  I 

I 

3 

4 (4-15) 
I 

2 

1 

zero except for 

(1, 1) term 
th 
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th 
The t- component of the H vector i s  given by (H ) T P ' A ' ~ ~ )  p/21F'p\ 3- H (H ) /T(F'p\ 

TX r x  6 T x t  

1 

I O  0 0 I .  I 

c 

h (FF ' p) (FF ' p) ' 

HPP = m IF' P I 2  

4.4 Init ial Evaluation of the Correction Matrix M(to) 

To be able to  integrate the Ricatti equation (2-17) one must start with a value of the M 

matrix, at some determined t ime. 

matrix must satisfy the exact relationship 

From (2-9) we see that along the optimum nominal path the M 

It i s  clear that the above relationship only gives 6 equations (for a &component state vector) 

and yet M(tO) must be defined by 21 independent matrix elements (making use of the fact that M 

i s  a symmetric matrix). However, one can obtain a terminal value M(T) by imbedding the bound- 

ary conditions into conditions on M(T) and then integrating the Riccati equation backward to the 

init ial  time. The procedure for obtaining the matrix M(T) i s  described in detail in reference [ 1 1  . 
Basically the technique i s  to express M(t) i n  the form 

M(t) = S(t) - R(t)  Q-'(t) R'( t )  (4-17) 
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where S, Q and R satisfy the following equation 

S + S H  S + H X X  - S = SHXp + HpX PP 

- R = (HpX +SHpp)R 

- Q  = R’HppR 

The following terminal conditions apply 

S ( T )  = 0 

where 

k+t-j 
S 1 

t =  l , 2 ,  . . .  , s  

, j = 1 , 2 ,  . . .  , n  

(4- 1 8) 

(4- 1 9) 

are the boundary conditions 

When s i s  less than or equal to one Q(T) i s  a non-singular matrix in which case M(T) 
can be evaluated directly by means of (4-17) and (4-19) without resorting to the differential 

equations (4-1 8). 
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Clearly when s i s  greater than one Q(T) becomes a singular matrix. Consequently, M(T) 

I 
I 

cannot be evaluated at t = T .  This problem i s  circumvented by integrating the differential equations 

for S , R and Q for a small time A backwards from T and using the results to compute M(T - A ) .  

For the specific case of a 6-component state vector with a single boundary condition (say on 

the terminal energy, or equivalently, on the semimaior axis of the trajectory) the M(T) matrix can 

be expressed as 

1 M(T)= - 02 
x 1  

where 

51 
a 0 

I 
I 
I 
I 

0 0 0 0 
I 

0 0 0 0 0 I 
I 
I 

I 
a6 1 I 

b E k ' ( T ) b ( T )  

4.5 Discussion of Results 

1 
8 

(4-20) 1 
I 
I 
I 
I 
I 
I 

The quasi-optimum feedback quidance scheme was investigated for the case of a low thrust 

vehicle whose thrust vector i s  permantly misaligned by 10 degrees from i t s  specified direction. A 

digital computer program was used to simulate the performance of the optimum guidance system, the 

open-loop guidance system and closed-loop or feedback system. The following in i t ia l  conditions were 

used : 

I 
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2 
in i t ia l  thrust acceleration = 0.05 ft/sec 

exhaust velocity = 50,000 ft/sec 

in i t ia l  semimajor axis 

ini t ial  eccentricity = .053 

= 1.46 earth radii 

case 

Optimum Thrust; No misalignment 

Feedback guidance; 1 Oo misalignment 

Open-loop guidance; 10' misalignment 

The duration of the simulated flight was 44.5 hrs. (approximately 9 Q 
semimaior axis reached 4.7 earth radii. 

orbits) at which time the 

semimajor axis 
(Earth Radii) 

4.541 3 

4.4387 

4.4373 

The first case that was considered was one in  which only a single terminal condition was 

specified, namely the energy of the vehicle or equivalently the semimajor axis of the orbit. The 

optimum thrust vector was computed along the trajectory and then biased by 10 degrees to simulate 

the open-loop guidance system. In the closed-loop system the control was computed in accordance 

with (2-21) and (4-3) and then biased by 10 degrees to simulate the misalignment. The optimum dir- 

ection of the thrust vector and those resulting from the open and closed-loop systems under a 10 de- 

gree misalignment i s  shown in  Figure 4. l . The open-loop thrust vector is,  of course, exactly 10 

degrees less than the optimum and the closed-loop thrust vector differs by less than 3 1/2 degrees 

from that of the open-loop system. A comparison of the performance of the three systems at the end 

of 44.5 hrs. . s  shown below in  Table 4.1 . The variation of the semimaior axis during the entire fl ight 

i s  shown i n  Figure 4.2 . 

Table 4.1 

These results indicate that for cases i n  which only the terminal energy of the vehicle (or 

equivalently semi major axis of the orbit) i s  specified the feedback guidance law provides a negligible 

improvement over the open-loop guidance system. However, this lack of improvement does not nec- 

essarily reflect a weakness i n  the feedback guidance law since the open-loop system i s  already fair ly 
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l 2 * O I  8.0 

ANGLE FOR OPTIMUM TRAJECTORY 

--- -0  - 0  OPEN-LOOP GUIDANCE WITH A T E N  DEGREE 
MISALIGNMENT IN THRUST VECTOR 

MISALIGNMENT IN THRUST VECTOR 
O 0 0 0 OCLOSED-LOOP GUIDANCE WITH A TEN DEGREE 

I 0 0 
I I I I I I 

-60 -5 0 -40 - 30 -20 -1 0 0 

Non-Dimensional Time 7 (Radians) 

DIRECTION OF THRUST VECTOR (WITH RESPECT TO LOCAL HORIZONTAL) 
FIGURE 4-1 
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close to optimum i n  achieving the desired terminal energy. 

circumferential thrust would probably be adequate i f  the energy of the vehicle was the only terminal 

condition to be satisfied. A more realistic situation, however, would require not only specifying a 

terminal energy, but also the orbital angle at which this energy i s  attained. 

In fact, a control consisting of pure 

Specifying two terminal conditions (the semimaior axis and the orbital angle) requires the 

computation of a new init ial  feedback matrix M(t ) which i n  turn entails evaluation of M(T) and a 0 
backward integration to t However since M(T) does not exist when more than one terminal con- 

dit ion i s  specified the value of M must be computed at time T - A using (4-17) - (4-19). For the 
0 '  

two terminal conditions under consideration x (T) = C and 

matrices specified i n  (4-19) are given by 
1 1 x (T) = C, the R(T) and Q(T) 6 

0 

0 

' 6  (T) 

In one computer run the S , Q and R equations were integrated from T to T -  0.5, at 

which point M was evalutated and the remainder of the traiectory computed using the costate equa- 

tion 6 = M i  . It turns out that the computation of M this close to the terminal time produces 

elements of the.matrix which are very large (of the order of 10 ). The values of S and b are of 

the order of magnitude of unity which implies that even 7 place accuracy i n  this computation of M 

10 

can result i n  errors of as much as 3 orders of magnitude i n  the costate vector p. 

In another run the equations were integrated backwards to T - 45.0 and the M matrix com- 
5 puted of this point. The elements of the matrix were of the order of 10 indicating that 7 place accuracy 

i n  this computation of M might suffice. However with the algorithm presently being used to compute 

M(t ) the normal digital computer round-off and truncation errors would be intolerable. Therefore 

a reprogramming of the algorithm to minimize the computational errors i s  required before any conclusive 
0 

results can be obtained. 
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APPENDIX I 
~ ~~ 

IGM Guidance Law 

The equations used to simulate the IGM guidance law were obtained from References 6, 7, 
and 8. They are divided into 3 sections which are: 

(1) hrnout State Predictor 

(2) Time-to-go Cornpu ta t ion 

(3) Steering Angle Computation 

I 
i s  listed below: 

The equations used are illustrated in Figure I - 1 . The data required to init ial ize the algorithm 

F = thrust i n  pounds 

= time-to-go 

ni = mass flow rate 
TGO 

= burnout altitude 

= x - velocity at burnout 

= y - velocity at burnout 

= gravitation acceieration at burnout altitude 

= time between guidance law computations 

= weighting factor for improving burnout angle prediction when long and/or 

'DES 

'DES 

'i, Es 

 DES 
At 

WFTR 

steep traiectories are encountered. 

In addition the following inertial measurements are required. 

, 1) vehicle mass 

2) x and y position 

3) x and y velocity 

4) = tan (y/x) 

5) R - d x 2  + y 2  

- 1  
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Figure I - 1 IGM Guidance Equations 

INERTIAL DATA - - _ _ _ - - - - -  

m l  x /  Y I  ;/ if/ R /  @ 

V = F/m 

= rn/ni 
ex 

0 
- At - 

TGO - TGO 

A = A T  - V  T 2 1 0  ex GO 

A =  3 

A =  4 

- - 
GO 

@T 

-A2 +AITGO 
2 

'OA3 ex GO - V  T / 2  

QB0 = @ +OT 
GO 

BO 

BO 

BO 

BO 

= x c o s @  - y s i n @  'BO BO 
= x sin @ + y cos @ BO BO 
= i< cos @ - if sin @ BO BO 
= ;< sin @ + 9 cos @ 'BO BO 

g = p/R2 

g* zz (g + gDES)/2 

Tb2 
+ A ~  FT R) / 'DES 

@* = aT 
GO 

I 
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v = (XDES - iB0 - g*TGOsin CP * ) 2 
g X  

Y 
1 v 2 + v 2  7 0 

'0 - TGO 

STEER I NG ANGLE COMPUTAT I ON -------------------- 

A = A T  - V  T 

A 3 = - A  + A T  

2 1 0  ex GO 

2 1 GO 
A = ?0A3 - VexTGO/2 2 

4 

1 cos CP * 
DES - 'BO - g*TGOsinO * 

ry 

X = tan 

L 

A,Q - %P a =  

b = "Al/% 

x = c - a + b t  
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APPENDIX II 

Modified Secant Algorithm for N Equations with N Unknowns 

In order to solve approximately the n equations 

El(xl , x2, ... , x ) = 0 

E2(xl , x2, ... , x ) = 0 

n 

n 

Assume that for n + 1 points the values of E 

are n + 1 sets of equations 

are known. Associated with each of the n + 1 points t I 
8 

For each set of equations form the sum 

= n h + 1 ) ) 2  
(Et n + l  t=l 

(1) 2 
El = 5-1 C_ (E ) , ... C I 

I 

Denote the largest sum C and the smallest sum C . Set K equal to a number between zero 
max min 

and one. The following set of equations i s  solved for qt . c 
. . .  
. . .  
. . .  

. . .  E (min) 
n 

(I1 - 1) 
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With these qt ‘ s  compute a new point as follows 

i 

new 
(n+2) and C , calculate EL 

n +2 
Using the new point, x 

41 

92 

J 

n 

1 
1 

= c (Ei(ni2))2 . If > C t= 1 new max 

i n  (11-I), replace x (max) with x(n+2) i n  (11-2) and repeat the computation 

halve k and repeat ( I 1  - 1 and 2). If C double k (up to a maximum of I ) ,  replace 

c 
of equations (11-1 and 2). The algorithm i s  terminated when C 

and the solution i s  taken as x 

new max 

new 
with C 

max 
i s  less than a predetermined value 

min 
(min) 
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The a 

MSFCand i s  

APPENDIX 1 1 1  

Ca I cu lati on of Gravity Pol ynomia I Coefficients 

for the PGE Guidance Law 

gorithm used to calculate the coefficients for the gravity polynomials was supplied by 

llustrated i n  Figure 111-1 . 

Figure Ill - 1 Equations Used to Calculate the 

Coefficients for the PGE Gravity Polynomials 

INERTIAL DATA --------- 

x i  I X t  I m 

(t = 1 , 2 ,  3) 

=i! P't 
t= 1 

CURRENT ESTIMATED ADJOINT ------------------ 
VARIABLES AND TIME-TO-GO ------------------ ---I 

t i I (5 = 1,2, 3) 

I 

' Z = 1 + 2ATG0 + B ~ T ~ ~  2 
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. *  - 
Xt - 

... 
x =  i 

.. 
R =  

... 
R =  

- 
- 

- 
5 2  - 

s 3  - 

5 4  - 

- 

- 

3xt k/R) 

... 
) /R3 

2 .. 
2. R *  3R RCt2 - 3R{R 2 + R I Ci, 

.. 
2 .  R ' 2  3R RCt3 - 3R{R- + R 1 Ct2 - 2 

( 5  = 1 ,  2, 3) 
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